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SUMMARY

In this paper we consider the problem of designing state observers with guaranteed power-to-power
(RMS) gain for a class of stochastic discrete-time linear systems that possess both measurable parameter
variations and Markovian jumps in their dynamics. It is shown in the paper that an upper bound on the
RMS gain of the observer can be characterized in terms of feasibility of a family of parameter-dependent
linear matrix inequalities (LMIs). Any feasible solution to these LMIs can then be used to explicitly
construct a parameter-varying jump observer that guarantees the desired performance level. This design
framework is then specialized to a problem of state estimation for a linear parameter-varying plant whose
state measurements are available through a lossy Bernoulli channel. Two numerical examples illustrate
the results. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Linear parameter-varying (LPV) systems are commonly used to model dynamical systems that
depend on a priori unknown, but online measurable time-varying parameters. These models have
been extensively studied in the literature, mainly due to the reason that they provide a systematic
way to design gain-scheduling filters and control laws for nonlinear systems; see, for instance,
[1, 2]. LPV approaches permit one to reduce the conservatism inherent in robust design methods,
in cases where the a priori uncertain parameters can actually be acquired at the time of system
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operation; see, e.g. [3–7]. There are indeed many relevant engineering applications where this
is the case. Typical examples include, for instance, altitude, speed and pressure measurements
in aerospace [8], asset and configuration in manufacturing and robotics [9], concentration and
pressure measurements in chemical systems [10].

On a different direction, a considerable research effort has been recently devoted to the analysis
of systems whose dynamics may change abruptly and in a random manner, and in particular to the
class of Markov jump linear systems [11, 12]. Such systems turn out to be particularly useful for
modeling phenomena of control and estimation over networks, where random delays and packet
losses may occur; see, for instance, the recent surveys [13, 14] and the references therein. The
filtering problem for Markov jump systems has been extensively studied in the literature. For
instance, de Souza and Fragoso [15, 16] treat the case of H∞ filtering in continuous and discrete
time, when the Markov state (mode) is available to the filter, while Feng et al. [17] consider the
mode-independent case. If uncertainty is present in the dynamics, a robust approach for filter design
is considered in [18–20]. In a similar setting, Xiong and Lam [21] analyze the case when the
Markov transition matrix is uncertain. Note that in a robust approach the filter is fixed once and for
all, and it gives a priori guaranteed performance for all possible values of the uncertainty. Thus, the
robust approach is certainly useful when no information about the parameters is available during
operation, but may lead to conservative designs when the a priori parameter uncertainty is ‘large’.
However, as previously discussed, in many practical situations the a priori unknown parameters
can actually be acquired online. This information can hence be exploited by the filter in order
to ‘adapt’ to the changes in the system dynamics and improve performance. In this ‘parameter
varying’ setup, the filter itself should therefore be allowed to vary with the parameters. Motivated
by the above considerations, this paper explores the filter design problem for Markovian jump
systems in the parameter-varying framework. To the best of the authors’ knowledge, this setup has
not been considered in the literature yet.

More precisely, in this note we study a filtering problem for linear discrete-time systems whose
dynamic matrices jump according to a finite Markov chain and are functions of a priori unknown
but measurable parameters (J-LPV systems). For this class of systems, we study the problem of
designing a mode-dependent parameter-varying observer with guaranteed power-to-power (RMS)
gain between the disturbance input and the estimation error.

The key result in Section 4 provides a condition for the RMS gain to be bounded, in terms of
feasibility of a set of parameter-dependent linear matrix inequalities (LMIs). When these conditions
are satisfied, a jump parameter-varying observer is also explicitly constructed. In Section 4.1, this
result is specialized to the case of affine dependence of parameters ranging in a polytopic domain.
In this case, the convex program induced by the LMI conditions can be solved efficiently.

Note that a parameter-varying plant that is to be observed or controlled through lossy channels
can be suitably modeled by a system with both parameter variations and random jumps. Therefore,
in Section 5 we specialize our results to parameter-varying plants whose output measurements
are available through unreliable (Bernoulli) channels (i.e. with a certain probability measurements
may not be available at some instants). Two numerical examples illustrate the proposed observer
design technique.

1.1. Notation

X� denotes the transpose of matrix X ; X+ denotes the Moore–Penrose pseudoinverse of X ; and
X⊥ denotes an orthogonal complement of X , i.e. a matrix of maximum rank such that X⊥X =0.
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In denotes the n×n identity matrix, and=0n,m denotes an n×m matrix with zero entries; subscripts
with dimensions are omitted when easily inferred from context. For X1∈Rn1,n1 , X2∈Rn2,n2 ,
diag(X1, X2) denotes the block diagonal matrix[

X1 0n1,n2

0n2,n1 X2

]

X �0 means that symmetric matrix X is positive definite. We denote by co{�1, . . . ,�n} the convex
hull of points �1, . . . ,�n . The space of finite power sequences is denoted by U, that is, U is the
space of sequences z such that

‖z‖2rms= lim
T→∞

1

T

T∑
k=0

z�k zk<∞

Given a sequence of random variables {�1, . . . ,�n} and a function x(�1, . . . ,�n), we denote
by E{�1,...,�k }[x] the expected value of x computed with respect to {�1, . . . ,�k}, and by
E�k+1

[x | {�1, . . . ,�k}] the expectation of x with respect to �k+1, conditioned on {�1, . . . ,�k}. The
i th entry of vector x is denoted by xi or [x]i .

2. PRELIMINARIES

Consider a system S described by the following equations:

xk+1 = A�k (�k)xk+B�k (�k)uk (1)

yk =C�k (�k)xk+D�k (�k)uk (2)

�k ∈ �, �k ∈{1, . . . ,N } (3)

where xk ∈Rn is the state at time k; uk ∈Rnu is a disturbance input at time k; �k is a time-
varying parameter that, a priori, is only known to belong to a given compact set �⊂Rn� ; �k is a
homogeneous Markov chain taking values in the finite set {1, . . . ,N }; and yk ∈Rny is the stochastic
output of the system. The Markov chain has given transition probabilities

pi, j
.=prob{�k+1= j |�k = i}, i, j =1, . . . ,N

The initial conditions for the system are specified by an initial state x0 and mode �0.
When useful for notational compactness, the system matrices are regrouped as

S�k (�k)
.=
[
A�k (�k) B�k (�k)

C�k (�k) D�k (�k)

]
(4)

The following standard notion of stability is here adopted for the stochastic systemS see, e.g. [22].
Definition 1 (Stochastic stability (SS))
Let uk =0 for k�0. System (1)–(3) is said to be stochastically stable if for any initial conditions
x0,�0 it holds that

∑∞
k=0 E�k [x�

k xk]<∞, where �k
.={�1, . . . ,�k}.
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For purely Markov jump systems (i.e. systems possessing only the Markov parameter �k , without
the time-varying term �k), there exists a well-known necessary and sufficient characterization of
stochastic stability; see, for instance, [11, 22, 23]. On the other hand, for purely parameter-varying
systems (i.e. systems possessing only the �k parameter, without the Markovian jump structure),
there exist several sufficient conditions for stability, the simplest of which (known as quadratic
stability) is based on the existence of a common quadratic Lyapunov function for all possible values
of �k ∈�. The following lemma provides a sufficient condition for stochastic stability of the mixed
parameter-varying and Markov jump system (1)–(3). This lemma extends to parameter-varying
systems the stability results in [11, 22, 23]; a proof is provided in Appendix A.

Lemma 1
Suppose there exist matrices Pi �0, i=1, . . . ,N , such that

A�
i (�)P̄i Ai (�)−Pi ≺0 ∀�∈�, i=1, . . . ,N (5)

where P̄i
.=∑N

j=1 pi, j Pj . Then, system S is stochastically stable.

3. A BOUND ON RMS GAIN

Assuming that S is stochastically stable, we say that the RMS gain of the system is less than
�>0 if

sup
0 
=u∈U

‖y‖rms

‖u‖rms
<�

for all �0 and for all y satisfying (1)–(3), with x0=0. Here, the RMS value of the discrete-time
stochastic signal y is defined as ‖y‖rms

2 .= limT→∞(1/T )
∑T

k=0 E�k [y�
k yk]. The following lemma

provides a sufficient condition for a finite upper bound on the RMS gain of system S to exist. A
proof of this result is given in Appendix A.

Lemma 2
Suppose there exist symmetric matrices Pi �0, i=1, . . . ,N such that

[
diag(P̄i , I ) diag(P̄i , I )Si (�)

∗ diag(Pi ,�
2 I )

]
�0 ∀�∈�, i=1, . . . ,N (6)

where Si (�) is defined in (4), and P̄i are defined as in Lemma 1. Then, system S is stochastically
stable and has an RMS gain less than �.

Remark 3
When � contains only one element, that is, �k is constant and fixed, condition (6) reduces to a
known bounded real condition for Markovian jump systems, which has been proved to be both
necessary and sufficient, under an additional hypothesis of weak controllability; see [24].
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4. RMS OBSERVER DESIGN

Let system (1)–(3) be given. Following the standard approach for LPV systems, we assume that
the time-varying parameter �k can be measured online at each time instant. We assume further that
the current mode �k of the Markov chain is available at time k. This hypothesis is in agreement
with most of the literature on Markovian jump systems see, e.g. [15, 16, 18–20]. On the basis of
this information, we consider a filter having observer structure of the form

x̂k+1= A�k (�k)x̂k+L�k (�k)(yk−C�k (�k)x̂k) (7)

where L�k (�k) is the parameter-varying filter gain, such that L�k (�k)= Li (�k) when the system is
in mode �k = i . The filtering error is defined as ek

.= xk− x̂k . The filtering error system F having
input u and output e is hence described by

ek+1=Akek+Bkuk (8)

with Ak
.= A�k (�k)−L�k (�k)C�k (�k) and Bk

.= B�k (�k)−L�k (�k)D�k (�k). In compact notation,
the error system F is represented by the quadruple

F�k (�k)
.=
[
Ak Bk

In 0n,nu

]
=

[
A�k (�k) B�k (�k)

In 0n,nu

]
+

[−In

0n,n

]
L�k (�k)[C�k (�k) D�k (�k)] (9)

The following main theorem holds.

Theorem 1
Consider system S in (1)–(3), with Di (�) full row rank. Let (7) be an observer associated with
system S, and let �>0 be given. Define

P̄i
.=

N∑
j=1

pi, j Pj , Hi
.=(Pi − In)

−1, Ri (�)
.=Di (�)D�

i (�)

Ni (�)
.= an orthogonal basis for kerDi (�) : Di (�)Ni (�)=0 and N�

i (�)Ni (�)= Inu−ny

If the following convex conditions in the variables Pi = P�
i , i=1, . . . ,N :

Pi � In (10)⎡
⎢⎢⎢⎢⎢⎢⎣

P̄i 0n,n P̄i Ai (�)− P̄i Bi (�)D�
i (�)R−1

i (�)Ci (�) P̄i Bi (�)Ni (�)

∗ In In 0n,nu−ny

∗ ∗ Pi +�2C�
i (�)R−1

i (�)Ci (�) 0n,nu−ny

∗ ∗ ∗ �2 Inu−ny

⎤
⎥⎥⎥⎥⎥⎥⎦

� 0 (11)

are satisfied for all �∈�, i=1, . . . ,N , then the observer gains

Li (�)=
(
Ai (�)HiC

�
i (�)+ 1

�2
Bi (�)D�

i (�)

)(
Ci (�)HiC

�
i (�)+ 1

�2
Ri (�)

)−1

(12)
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i=1, . . . ,N , guarantee that the filtering error system F in (9) is stochastically stable and has an
RSM gain less than �. Minimizing �2 subject to (10)–(11) then yields an optimized upper bound
on the RMS gain of the filtering error system.

Proof
By Lemma 2, system F is stochastically stable and has an RMS gain less than �>0 if there exist
matrices Pi �0, i=1, . . . ,N , such that for all �∈�, i=1, . . . ,N[

diag(P̄i , In) diag(P̄i , In)Fi (�)

∗ diag(Pi ,�
2 Inu )

]
�0 (13)

Substituting (9) into (13), we explicitly obtain that the inequality

Qi (�)+Ui Li (�)V�
i (�)+Vi (�)L�

i (�)U�
i �0 (14)

must hold ∀�∈�, and for i=1, . . . ,N , with

Qi (�)
.=

⎡
⎢⎢⎢⎢⎢⎣

P̄i 0n,n P̄i Ai (�) P̄i Bi (�)

∗ In In 0n,nu

∗ ∗ Pi 0n,nu

∗ ∗ ∗ �2 Inu

⎤
⎥⎥⎥⎥⎥⎦ , Ui

.=

⎡
⎢⎢⎢⎢⎣

−P̄i

0n,n

0n,n

0nu ,n

⎤
⎥⎥⎥⎥⎦ , Vi (�)

.=

⎡
⎢⎢⎢⎢⎢⎣

0n,ny

0n,ny

C�
i (�)

D�
i (�)

⎤
⎥⎥⎥⎥⎥⎦

Consider the following orthogonal complements of Ui and Vi (�), respectively:

U⊥ =
⎡
⎢⎣

0n In 0n 0n,nu

0n 0n In 0n,nu

0nu ,n 0nu ,n 0nu ,n Inu

⎤
⎥⎦ , V⊥

i (�)=

⎡
⎢⎢⎢⎢⎢⎣

In 0n 0n 0n,nu

0n In 0n 0n,nu

0n 0n In −C�
i (�)D�+

i (�)

0nv,n 0nv,n 0nv,n N�
i (�)

⎤
⎥⎥⎥⎥⎥⎦

Applying to (14) the elimination lemma (Lemma A1, in Appendix A), we obtain that (14) holds
for suitable gains Li (�), if and only if U⊥

i Qi (�)U⊥�
i �0, V⊥

i (�)Qi (�)V⊥�
i (�)�0. After standard

matrix manipulations, it can be verified that these two conditions are equivalent to (10), (11).
Equation (12) then follows from (A5), with the position

�1 = 0n,ny , �2=

⎡
⎢⎢⎣

0n,ny

C�
i (�)

D�
i (�)

⎤
⎥⎥⎦ , Z11= P̄−1

i ,

Z22 =

⎡
⎢⎢⎣
In In 0n,nu

∗ Pi 0n,nu

∗ ∗ �2 Inu

⎤
⎥⎥⎦ , Z�

12=−

⎡
⎢⎢⎣

0n,n

A�
i (�)

B�
i (�)

⎤
⎥⎥⎦ �
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4.1. Polytopic parameter model

Note that, in the frequently arising case when � contains infinite elements, conditions (11) in
Theorem 1 require the satisfaction of infinitely many LMIs, i.e. the ensuing filter design problem
amounts to solving a semi-infinite convex LMI problem. Such problems are typically encountered
in the LPV approach to filtering and control and may be computationally difficult to solve. In
order to address this issue, different approaches are generally followed. A first approach amounts
to restricting the attention to a specific class of functions of the scheduling parameters. For
example, one can assume that the matrices of the LPV model are expressed as a linear fractional
transformation of the underlying parameters; see, for instance, [4, 5, 25]. The original problem is
then relaxed to more tractable formulae that involve a finite number of LMIs. Another classical
approach is to determine an approximate solution based on finite gridding of the set �, see, for
instance, [3, 5, 7]. Recently, approaches based on random gridding (sampling), which can deal with
generic dependence on �, have been proposed in [26, 27].

In this section we consider a special case in which the LMI conditions can be solved efficiently
to any practical numerical accuracy. This special situation arises when � is a polytope (which
encompasses the usual case of independent interval uncertainty), Ai (�), Bi (�) are affine functions
of �, and Ci (�),Di (�) do not depend on �. In this case, condition (11) is equivalent to a finite
number of LMIs corresponding to the vertices of the polytope �. This is formally stated in the
following corollary.

Corollary 1
Consider system S in (1)–(3), and let D�k (�k)=D�k be full row rank, C�k (�k)=C�k , and

A�k (�k)= A(0)
�k

+
n�∑

�=1
[�k]�A(�)

�k
, B�k (�k)= B(0)

�k
+

n�∑
�=1

[�k]�B(�)

�k
(15)

where

�k ∈�, �
.=co{�(1), . . . ,�(m)}

Let (7) be an observer associated with system S, and �>0 be given. Define P̄i ,Hi , Ri ,Ni as in
Theorem 1. If the following convex conditions in the variables Pi = P�

i , i=1, . . . ,N :

Pi � In,

⎡
⎢⎢⎢⎢⎢⎢⎣

P̄i 0n,n P̄i Ai (�
(�))− P̄i Bi (�

(�))D�
i R−1

i Ci P̄i Bi (�
(�))Ni

∗ In In 0n,nu−ny

∗ ∗ Pi +�2C�
i R−1

i Ci 0n,nu−ny

∗ ∗ ∗ �2 Inu−ny

⎤
⎥⎥⎥⎥⎥⎥⎦

�0 (16)

are satisfied for �=1, . . . ,m, i=1, . . . ,N , then the observer gains

Li (�)=
(
Ai (�)HiC

�
i + 1

�2
Bi (�)D�

i

)(
Ci HiC

�
i + 1

�2
Ri

)−1

(17)

i=1, . . . ,N , guarantee that the filtering error system F in (9) is stochastically stable and has an
RMS gain less than �. Minimizing �2 subject to (16) yields an optimized upper bound on the RMS
gain of the error system F.
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4.2. Example 1

To illustrate the result in Corollary 1, we considered the following numerical example with two
Markovian states, i.e. �k ∈{1,2}, and two time-varying parameters, i.e. �k ∈R2. Specifically, we
choose

A1(�k) =
[−0.5 −0.4

0.1 −0.8

]
+[�k]1

[
1 0

0 1

]
+[�k]2

[
0 1

1 0

]

A2(�k) =
[−0.75 −0.5

0.1 −0.6

]
+[�k]1

[
1 0

0 1

]
+[�k]2

[
0 1

1 0

]

B1(�k) =
[
0.1 0

0.1 0

]
+[�k]1

[
0.1 0

0 0

]
+[�k]2

[
0 0

0.1 0

]

B2(�k) = B1(�k)

C1 = [−1.5 3]
C2 = [3 −4]
D1 = D2=[0 0.01]

and suppose that the entries of �k are bounded in the interval [−0.1, 0.1], that is,

�k ∈co

{[−0.1

−0.1

]
,

[−0.1

0.1

]
,

[
0.1

−0.1

]
,

[
0.1

0.1

]}

Moreover, the Markov transition probabilities are set to p11=0.9, p12=0.1, p21=0.7, p22=0.3.
With these data, minimizing �2 subject to the conditions in (16) yielded optimal upper bound on
the RMS gain of the filter �=0.2863, and optimal parameter-varying observer gains

L1(�k) =
[−0.5707

−0.4541

]
+[�k]1

[
0.6248

0.6457

]
+[�k]2

[
0.6457

0.6248

]

L2(�k) =
[−0.4262

−0.0215

]
+[�k]1

[
0.4899

0.1175

]
+[�k]2

[
0.1175

0.4899

]

A numerical simulation of the system (obtained for zero initial state conditions, normal random
input with 0.01 variance and [�k]1=0.1sin(0.05k), [�k]2=0.1cos(0.05k)) yielded the trajectories
shown in Figure 1. The experimental RMS filter gain resulting from this simulation was equal to
0.116.

5. OBSERVER DESIGN WITH MISSING MEASUREMENTS

The developed framework for observer design has several applications. In particular, we next
apply it in the context of systems with unreliable measurement channels, which is a key topic in
networked control; see, e.g. the recent surveys [13, 14].
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Figure 1. Simulation of system (bold) and estimator state trajectories for the system in Example 1.
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Assume that the plant is described by

xk+1= A(�k)xk+ B̃(�k)vk (18)

and that measurements of the state are obtained through a Bernoulli channel, that is, with probability
p a measurement is available according to the equation yk =Cxk+ D̃wk , and with probability 1− p
the measure contains noise only, i.e. yk = D̃wk . This corresponds to a system having Markovian
jumps in the C matrix only:

yk =C�k xk+ D̃wk (19)

with �k ∈{1,2} and

C�k =
{
C if �k =1

0 if �k =2

The Markov chain governing the jump system is depicted in Figure 2.
This kind of lossy measurement models has been considered in several papers; see, for instance,

[13, 28–30]. In the context of this note, the above situation is captured simply by taking uk =
[v�

k w�
k ]�, vk ∈Rnv , wk ∈Rnw , and

B�k (�k)=[B̃�k (�k) 0n,nw ], D�k (�k)=[0ny ,nv D̃] (20)

The following corollary holds.

Corollary 2
Consider the LPV system (18) with unreliable measurement equation (19) governed by the

Markovian model in Figure 2. Let D̃∈Rny ,nw be full row rank, �=co{�(1), . . . ,�(m )}, and
A�k (�k), B�k (�k) be as in (15). Define

P̄
.= P̄1= P̄2= pP1+(1− p)P2, H

.=(P1− In)
−1 (21)

If the following convex conditions in the symmetric matrix variables P1, P2 are satisfied for
�=1, . . . ,m:

P1� In, P2� In (22)⎡
⎢⎢⎢⎢⎢⎣

P̄ 0n P̄ A(�(�)) P̄[B̃(�(�)) 0n,nw−ny ]
∗ In In 0n,nu−ny

∗ ∗ P1+�2C�[D̃ D̃�]−1C 0n,nu−ny

∗ ∗ ∗ �2 Inu−ny

⎤
⎥⎥⎥⎥⎥⎦ � 0

⎡
⎢⎢⎢⎢⎢⎣

P̄ 0n P̄ A(�(�)) P̄[B̃(�(�)) 0n,nw−ny ]
∗ In In 0n,nu−ny

∗ ∗ P2 0n,nu−ny

∗ ∗ ∗ �2 Inu−ny

⎤
⎥⎥⎥⎥⎥⎦ � 0

(23)
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1p 2

1-p

1-p

p

Figure 2. Markov chain for plants with missing measurements. State �1=1 corresponds to an available
measurement, and state �2=2 corresponds to a missing measurement.

for �=1, . . . ,m. Then, the observer gains

Li (�)=

⎧⎪⎨
⎪⎩
A(�)HC�

(
CHC�+ 1

�2
D̃ D̃�

)−1

for i=1

0 for i=2

guarantee that the filtering error system F in (9) is stochastically stable and has an RMS gain less
than �. Minimizing �2 subject to (22)–(23) yields an optimized upper bound on the RMS gain of
the error system F.

Proof
A proof is obtained by applying Corollary 1 to this particular special case. More precisely, define

Ñ ∈Rnw,nw−ny .=an orthogonal basis for ker D̃ : D̃ Ñ =0 and Ñ� Ñ = Inw−ny

Then, the orthogonal complements Ni defined in Corollary 1 are given by N1=N2=diag(I, Ñ ).
Hence, using the positions in (20), (21), with C1=C , C2=0, and substituting these data into (16),
(17), we obtain the statement. �

The previous result for the observer gain structure is in agreement with intuition. That is, when
no measurement is available, the observer gain is zero, and the filter simply propagates forward
the plant dynamics.

5.1. Example 2

We adapt an example originally considered in [29] in the context of Kalman filtering with inter-
mittent observations. Consider an LPV system of the form

xk+1=
⎡
⎢⎣
1.25 1 0

0 0.9 0

0 0 0.6+�

⎤
⎥⎦ xk+√

20vk

with vk ∈R3. The state matrix A(�) depends on a time-varying parameter �, which is supposed to
be measurable online and to be bounded in the polytope �={0,�}. When �=0 we recover the non-
varying case considered in [29]. The state of the system is measured through a Bernoulli channel,
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Table I. Value of plim for different values of �.

� 0 0.25 0.35 0.4 0.45 0.5
plim 0.361 0.361 0.361 0.369 0.591 0.839

0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

p

γ

ρ=0.2 ρ=0.25

ρ=0.4

ρ=0.45

ρ=0.5

ρ=0.35

p
lim

0

Figure 3. Plot of the RMS gain versus the probability of receiving a good measurement, for different
values of the radius of parameter variation �.

with a probability of missing measurement equal to 1− p. In the case of available measurement,
the output equation is given by

yk =[1 0 2]xk+√
2.5wk

with wk ∈R. Note that, since the considered system is unstable, we can expect that if the channel
is unreliable (i.e. p is ‘small’) the observer will not be able to correctly follow the state trajectory,
whereas if measurements arrive frequently (i.e. p is ‘large’) the filtering error shall be stable.
It would therefore be interesting to determine the threshold value of measurement rate p below
which it is no longer possible to correctly estimate the states of the system. Specifically, we can
compute an upper bound plim on the minimum value of p such that the filtering error system F
is stable. That is, for fixed �, we consider the minimization problem

minimize
�2,p,P1,P2

p subject to p∈(0,1) and (22)–(23) (24)

This problem can be easily solved by bisection over p, where each step in the bisection method
requires checking feasibility of the LMIs considered in Corollary 2. For �=0, we obtain the value
of plim=0.361, which numerically coincides with the one obtained in [29]. Then, we run the
optimization (24) for increasing values of the uncertainty radius �. The results are reported in
Table I.

In Figure 3 we also report the values of the RMS gain � obtained optimizing �2 over (22)–(23)
for different values of � and values of p ranging in (plim,1).
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We note, as expected, that an increase in the radius of uncertainty � corresponds to a degradation
in the performance of the filter. Moreover, in our experiments, we observed that an abrupt change
in the limit value in the admissible level of measurement rate plim occurs when � reaches the
value 0.4. This type of behavior has also been observed in [29] and corresponds to the situation
where the system matrix A(�) may have more than one unstable eigenvalue.

6. CONCLUSIONS

This paper discussed an RMS filtering problem for discrete-time systems that present both parameter
variations and Markovian jumps in their system matrices. The key result in Theorem 1 provides
LMI conditions for guaranteeing that the filtering error system is stable and has (squared) RMS
gain less than a given level �2. An optimized filter can then be obtained by minimizing the level �2

subject to these conditions. The resulting convex optimization problem can be solved exactly when
� is of finite cardinality, or approximately via deterministic or probabilistic gridding techniques,
otherwise. In the particular case of polytopic LPV parameters, the problem becomes a standard
convex LMI optimization problem, which can be solved in polynomial time. Models of LPV
systems whose measurements are available through lossy channels fit into the considered class and
have been analyzed as a special case in Section 5.

APPENDIX A

Proof of Lemma 1
We start with a preliminary technical result: System S is stochastically stable if there exists a
stochastic Lyapunov function V (k)

.=V (xk,�k)= x�
k P�k xk , with P�k = Pi �0 when �k = i , such that

for all xk satisfying the system equations (1)–(3) it holds that E�k+1[�V (k)]<0, where �V (k)
.=

V (k+1)−V (k).
To prove this statement, note that, since E�k+1[�V (k)]<0 and V (k)>0, there exists �∈

(0,1) such that E�k+1[�V (k)]=E�k+1[V (k+1)]−E�k [V (k)]�−�E�k [V (k)]; hence, E�k+1[V (k+
1)]�(1−�)E�k [V (k)]. Therefore, E�k [V (k)]�(1−�)kV (0). Summing over k from 0 to infinity,
we get

∑∞
k=0 E�k [V (k)]=∑∞

k=0 E�k [x�
k P�k xk]�(1/�)V (0). Since P�k �0, this implies that∑∞

k=0 E�k [x�
k xk]<∞, which proves the preliminary statement.

Suppose now (5) holds and define the stochastic Lyapunov function V (k)= x�
k P�k xk with P�k =

Pi , for �k = i . Then, we have E�k+1[�V (k)]=E�k [E�k+1
[�V (k)|�k]]=E�k [E�k+1

[V (k+1)|�k]−
V (k)], where the last equality follows from the fact that V (k) does not depend on �k+1. Note
now that E�k+1

[V (k+1)|�k]=E�k+1
[x�

k+1P�k+1
xk+1|�k]=E�k+1

[x�
k A�k (�k)

�P�k+1
A�k (�k)xk |�k]=

x�
k A�k (�k)E�k+1

[P�k+1
|�k] A�k (�k)xk . From the Markov property, it then follows that

E�k+1
[P�k+1

|�k]=E�k+1
[P�k+1

|�k]=
N∑
j=1

p�k , j P�k = P̄�k

hence E�k+1[�V (k)]=E�k [x�
k (A�k (�k)

� P̄�k A�k (�k)−P�k )xk]. It follows from (5) that this latter
expression is negative for all xk satisfying the system equations; therefore, stochastic stability of
S follows from the preliminary result. �
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Proof of Lemma 2
Again, we start by stating a preliminary result: Suppose there exists a stochastic Lyapunov function
V (k)=V (xk,�k)= x�

k P�k xk , with P�k = Pi �0 for �k = i , such that

E�k+1[�V (k)]<�2u�
k uk−E�k [y�

k yk] (A1)

holds for all u∈U, for all xk, yk satisfying (1)–(3), and for all k�0. Then, systemS is stochastically
stable and has an RMS gain less than �>0.

To prove this preliminary statement, note that since (A1) must hold for all u∈U, choosing
u=0, we have E�k+1[�V (k)]<0, which implies stochastic stability. Note next that

T∑
k=0

E�k+1[�V (k)]=E�T+1[V (T +1)]−V (0)=E�T+1[V (T +1)]

where we used the fact that x0=0 when V (0)=0. Therefore, summing over (A1) for k=0 to T ,
we get E�T+1[V (T +1)]<�2

∑T
k=0 u

�
k uk−∑T

k=0 E�k [y�
k yk], ∀T�0. Since E�T+1[V (T +1)]�0, it

follows that
∑T

k=0 E�k [y�
k yk]<�2

∑T
k=0 u

�
k uk , ∀T�0. Hence, dividing both sides by T and taking

the limit for T →∞, we get that ‖y‖rms
2<�2‖u‖rms

2 holds for all u∈U and yk satisfying (1)–(3),
which proves the preliminary statement.

Suppose now that (6) holds and define V (k)= x�
k P�k xk with P�k = Pi for �k = i . We have

E�k [E�k+1
[V (k+1) |�k]−V (k)]

=E�k [E�k+1
[(A�k (�k)xk+B�k (�k)uk)

�P�k+1
(A�k (�k)xk+B�k (�k)uk) |�k]−x�

k P�k xk]
=E�k [(A�k (�k)xk+B�k (�k)uk)

� P̄�k (A�k (�k)xk+B�k (�k)uk)−x�
k P�k xk]

<�2u�
k uk−E�k [(C�k (�k)xk+D�k (�k)uk)

�(C�k (�k)xk+D�k (�k)uk)]
The latter expression may be rewritten as

E�k

[
xk

uk

]�[
A�k (�k)

� P̄�k A�k (�k)−P�k +C�k (�k)
�C�k (�k) A�k (�k)

� P̄�k B�k (�k)+C�k (�k)
�D�k (�k)

∗ B�k (�k)
� P̄�k B�k (�k)+D�k (�k)

�D�k (�k)−�2 I

][
xk

uk

]
<0

which is satisfied for all xk,uk that satisfy the system equations if the following LMI holds for all
�∈�, i=1, . . . ,N :[−A�

i (�)P̄i Ai (�)+Pi −C�
i (�)Ci (�) −A�

i (�)P̄i Bi (�)−C�
i (�)Di (�)

∗ −B�
i (�)P̄i Bi (�)−D�

i (�)Di (�)+�2 I

]
�0

Let �i
.=diag(Pi ,�2 I ), �̄i

.=diag(P̄i , I ) and

Si (�)
.=
[
Ai (�) Bi (�)

Ci (�) Di (�)

]

Then the left-hand side of the previous inequality is rewritten as

�i −S�
i (�)�̄i Si (�)=�i −S�

i (�)�̄i �̄
−1
i �̄i Si (�)
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Hence, applying the Schur complement rule to the inequality, we obtain[
�̄i �̄i Si (�)

S�
i (�)�̄i �i

]
�0

which is the statement in (6). �

Lemma A1 (Elimination, see [31])
The matrix inequality

Q+UYV�+VY�U� �0 (A2)

holds for some Y if and only if

U⊥QU⊥� � 0 or UU� �0 (A3)

V⊥QV⊥� � 0 or VV� �0 (A4)

where U⊥,V⊥ are the orthogonal complements of U,V , respectively. Furthermore, if U,V are
full column rank and (A3), (A4) are satisfied, then a matrix Y that satisfies (A2) is given by

Y =(�1−Z12Z
−1
22 �2)(�

�
2 Z

−1
22 �2)

−1 (A5)

where [
�1

�2

]
.=
[
U+

U⊥

]
V,

[
Z11 Z12

Z�
12 Z22

]
.=
[
U+

U⊥

]
Q

[
U+

U⊥

]�
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